

...a founding member of the UV LED Curing Association

Optimizing UV-LED Curing – Print Applications

Nidal Abbas, MBA Group Product Manager

www.LDGI.com

Agenda

Introduction of Lumen Dynamics (LDGI)

• UV LED in Digital Print

Critical Parameters

LDGI Ink Curing Studies

Our mission is to revolutionize the way researchers, manufacturers and printers do their work

A technology company committed to providing customer solutions through the innovative application of light

What We Do

PHOTOCHEMISTRY EXPERTISE

LIGHT GENERATION

OPTICS

OUR

EXPERTISE

RADIOMETRY

CONTROL SYSTEMS

Our Market Focus

Lumen Dynamics is a global leader in the design, manufacture, and marketing of light-based delivery systems. Our focus is within the following market applications:

X-Cite® Fluorescence Illumination • In Control

Life Science Cellular Imaging

Medical Device and Optoelectronics
 Manufacturing

• Graphics Digital Printing

Our Approach...

Close collaboration with our customers and rigorous application testing.

We bring:

- Patented LED technology platform for UV applications
- Knowledge of UV curing
- 27 years of experience in making commercial, cost-effective UV solutions

UV LED in Digital Print

LED Benefits for Digital Printing

- Narrow optical spectrum
 - Cooler cure (no Infrared), allows printing on heat sensitive substrates
- Long lifetime (>10000 hrs)
 - Lower operating costs, simplified maintenance
- Air cooled now available
 - Simplified printer architecture
- Instant on/off
 - No warm-up or cool-down time, simplified mechanical design (no shutters)
- Environmentally friendly
 - No Hg, Ozone, lower energy consumption
- Simplified electronics
 - No high voltage ignition, reduced cost for printer electronics and shielding

For more details read <u>LED UV Curing in Wide-Format</u> <u>Digital Printing</u>, *SGIA Journal*, Q1 2010

Status of UV-LED Adoption in Print

IT Strategies estimates 30% of digital printers now come with LED or option for LED curing

- Digital Single Pass Applications Label, industrial marking
 - Widespread adoption for pinning and full cure by companies such as Atlantic Zeiser, ITW, etc.
- Digital Wide Format
 - Strong presence at entry level printers <15m²/hour
 - Recent introduction by EFI on GS platform >200m²/hr
- Analog Printing Early stages but on its way...
 - Screen Print LED optimized inks now available (Nazdar)
 - Offset Printing Proof of concept demonstrations (Kamori)

LED Curing – Technology Enablers

- Availability of high efficiency of UV LEDs
 - High power 1 x1mm² LED die (base building block)
 - Up to 500mW of power per die
- Availability of LED based light sources
 - LED Arrays with outputs > 8W/cm²
 - Requires advanced semiconductor packaging technology
- New ink formulations
 - Tailored to respond to spectrum of UV LED sources

Critical Parameters

Main Performance Parameters

- Wavelength match to chemistry
- Exposure area application specific
- Irradiance energy flux per unit time
- Dose -integrated energy delivered

Performance Factors		
	Poor	Good Excellent
Quality of Work		
Quantity of Work		
Dependability		
Communication Skills		
Supervision		
Leadership Skills		
Initiative		
Cooperation		
Relations		
Adaptability		

Dose vs Irradiance

- Arc lamps—wavelength and PI package used to optimize curing
- Monochromatic LEDs—dose and irradiance are the key controls
 - Dose means more LEDs (at basic level assuming optical collection is optimized) and implies higher cost

LDGI Ink Studies

LDGI Ink Studies

- In-house testing program
- Program objectives
 - understand current state of the art in LED inks
 - optimize LED curing units based on ink and application

Drawdown Sample Preparation Technique

LDGI Evaluation of Cured Ink Films

Application: drawdown

Cure assessment:

- Color transfer
- Surface tack
- Surface hardness
- Solvent resistance
- Adhesion to the substrate

Ink Type Dose Comparison

Key Observations:

- Difficult to get a good surface cure
- Surface cure was improved when using 365nm LED or a higher irradiance source
- Even within LED inks, dose requirements vary considerably

Having an LED specific ink formulation is critical to achieving full cure!

Source: Kuta et al 2010

UV Source Dependence – Wavelength and Irradiance

Ink Color Dependence

- Optical filtering by the color pigment also impacts the cure efficiency
- Inks with different colors
 (C, M, Y, K) perform differently
 - Yellow and black inks typically need more dose (20% – 30%) to be adequately cured with 4W/cm² compared with 8W/ cm²

Irradiance vs Dose Data

Source: LDGI internal report

Summary

- There is a non-linear inverse relationship between dose and irradiance required to achieve full cure
 - Higher irradiance requires less total dose
- Underlying mechanisms:
 - higher polymerization/curing rate combats oxygen inhibition at the surface leading to better surface cure
 - Improved depth of cure based on Bouger-Lamber Law leads to more complete bulk cure
 - Increased contribution to layer adhesion

Conclusions

- Full cure of UV digital inks is possible with current LED sources
- Surface cure can be a problem for inks that are not optimized for UV LED sources
- Ink formulations optimized to enhance the cure efficiency of LED based UV sources can dramatically reduce the dose requirement
- A successful printer design requires careful match of the LED source with an optimized ink formulation

Thank you...

For Additional information:

Nidal Abbas, MBA

Group Product Manager

Nidal.Abbas@LDGI.com

UV LED Curing Association (www.UVLEDCuring.org)

Lumen Dynamics is a founding member of the UV LED Curing Association

UVABC's On-Line Resource Center (http://www.uvabcs.com)

